Processes Controlling Temporal Changes in Agriculturally-Affected Groundwater

Monday, 15 December 2014: 1:55 PM
Karen R Burow1, Kenneth Belitz2 and Bryant C. Jurgens1, (1)USGS California Water Science Center Sacramento, Sacramento, CA, United States, (2)USGS Headquarters, NAWQA, Reston, VA, United States
The National Water Quality Assessment (NAWQA) program of the U.S. Geological Survey includes assessment of groundwater-quality changes with time. To better understand changes at a national scale, NAWQA has implemented smaller scale flow-path studies to evaluate the processes affecting these changes. Flow path studies are designed to sample groundwater of different ages. Wells are sampled for a suite of constituents, including tracers of groundwater age.

In the 1990s, a 4.6 km transect of monitoring wells was installed near Fresno in the southern Central Valley of California. The region is dominated by intensive agriculture. The wells were sampled in 1994-95, 2003, and 2013 to provide data on changes in water quality and groundwater age. In 2013, the flow path was extended to a regional scale (30 km) by using existing production wells.

Preliminary interpretation of the local-scale flow path indicates that nitrate concentrations in the upper 25 m of the aquifer are higher than the USEPA Maximum Contaminant Level (MCL) for drinking water and variably increase or decrease with time. At intermediate depths (25-40 m), nitrate concentrations are lower and show small to moderate increases. The legacy pesticide 1,2-dibromo-3-chloropropane (DBCP) is degrading at a half-life of about 4-6 years. DBCP is present above the MCL at intermediate depths even though it is has been banned from use for more than 30 years. Both nitrate and DBCP appear to be moving vertically downward through the aquifer. Whereas uranium concentrations are generally below the MCL in the local-scale flow path, concentrations increase along the regional transect, with concentrations nearly an order of magnitude above the MCL in some wells. Further evaluation of processes affecting these constituents (such as source, redox, and mobilization factors) will provide important insight that can be applied to other regions and will assist local water managers.