A Hybrid Geophysical Fluid Dynamics and Fully 3D Fluid Dynamics Approach to Simulate Multiphysics Coastal Flows

Tuesday, 16 December 2014
Hansong Tang and Ke Qu, CCNY, New York, NY, United States
A hybrid method that couples a geophysical fluid dynamics model to a fully 3D fluid dynamics model is the most feasible and promising approach to simulate coastal ocean flow phenomena that involve multiple types of physics spanning a vast range of temporal and spatial scales. We propose such a hybrid method that couples the Finite Volume Coastal Ocean Model (FVCOM) with the Solver for Incompressible Flow on Overset Meshes (SIFOM); the former is used to simulate large-scale estuary flows, and the latter is employed to capture small-scale local processes. The coupling involves distinct governing equations, different numerical algorithms, and dissimilar grids, and it is two-way and realized using the Schwartz alternative iteration. In this presentation, the proposed method will be outlined, and a few applications that are newly produced by it but cannot be handled by other conventional approaches will be presented.