H21D-0760:
Comparison of Water and Nutrient Cycles in the North China Plain and U.S. High Plains related to Climate Forcing

Tuesday, 16 December 2014
Bridget R Scanlon, Univ Texas Austin, Austin, TX, United States, Hongwei Pei, Chinese Academy of Sciences, Center for Agricultural Resources Research, Shijiazhuang, China and Yanjun Shen, Chinese Academy of Sciences, Shijiazhuang, China
Abstract:
The North China Plain (NCP) and U.S. High Plains play critical roles in food production, which relies heavily on groundwater resources for irrigation and nutrients. Here we evaluate food production in terms of resource availability (water and nutrients) and impacts on resources (groundwater quantity and quality) within the context of climate forcing. Double cropping of corn and wheat in the NCP under intensive irrigation (80 – 90% of cropland) and massive N fertilization (384 kg/ha) resulted in total corn plus wheat yields of 13.4 kg/ha (2002 – 2011). In contrast, single cropping of corn on the USHP under less intensive irrigation (40% of cropland) and N fertilization (90 kg/ha) resulted in only 15% lower yield in the USHP (11.7 kg/ha) than in the NCP. However, irrigation essentially decouples crop production from climate extremes. Average corn and wheat yield in the NCP over the past three decades is not correlated with precipitation. Irrigated corn yield in the north and central USHP was actually higher during the recent 2012 drought by up to ~ 30% relative to the 30 year long-term mean yield whereas rainfed corn yield decreased by ~50% during the drought. The main impact of climate extremes on the aquifers is indirect through increased irrigation pumpage for crop production rather than direct through changes in recharge. Effects of crop production on groundwater quality should be much greater in the NCP because of ~4 times higher fertilizer application relative to that in the USHP. Field research experiments in the NCP indicate that much of this fertilizer application (> 200 kg N/ha) does not impact yield and could potentially leach into underlying aquifers. Projected groundwater depletion in these aquifers should result in a shift from intensive irrigation to more rainfed crop production, increasing vulnerability of crop production to climate extremes.