B21B-0035:
Phytostabilization of Mining Soils By the Plant Anthyllis Vulneraria: A Micro-XRF and XAS Study

Tuesday, 16 December 2014
Marie-Pierre Isaure, University of Pau and Pays de l'Adour, Pau, France
Abstract:
Mine tailings are typical highly metal contaminated areas with very scarce vegetation. They are affected by intensive rain and wind erosion processes, thus representing a source of environmental and health hazard. Due to their large area and high level of contamination, conventional remediation techniques are not appropriate, and phytostabilization has emerged as an alternative technique during the last decade. The legume plant Anthyllis vulneraria has been identified as a pionner plant to revegetalize mining sites from South of France where an experimental site has been set up for 10 years. Our objective was to clarify the role of Anthyllis vulneraria in the distribution and speciation of Cd and Zn in the soil. For that, we used a combination of micro X-ray fluorescence (µXRF) and micro X-ray Absorption Near Edge Structure spectroscopy (µXANES) combined to Extended X-ray Absorption Fine Structure spectroscopy (EXAFS).

Results showed that the vegetation process had homogeneized the metal distribution in the soil compared to unvegetalized soil, and had decreased the Zn and Cd amount in the surface soil. Undisturbed cross-sections of soils showed that the top of the rhizosphere was highly enriched with organic matter after 10 years of vegetalization. Cd and Zn forms, mainly identified as CdCO3 and ZnCO3 in the unvegetalized soil, did not change significantly in the bulk rhizosphere but investigations at the micrometer scale allowed the identification of Cd and Zn organic phases in the upper part, probably related to the shoots decomposition, and thus to the organic matter recycling. At the close vicinity of the roots, some minor organic metallic forms were found whilst CdCO3 and ZnCO3 minerals were still present, thus highlighting the low direct impact of the roots in the soil. Finally, this study indicated that the direct impact of the plant on Cd and Zn speciation in the soil was weak, while an indirect effect resulting from shoots decomposition could be observed.