Stability of Grassland Communities to Altered Precipitation: A Meta-Analysis

Tuesday, 16 December 2014: 9:02 AM
Yiqi Luo1, Zheng Shi1, Scott L Collins2, Alan Knapp3, William Pockman2 and Melinda Smith3, (1)University of Oklahoma Norman Campus, Norman, OK, United States, (2)University of New Mexico, Albuquerque, NM, United States, (3)Colorado State University, Fort Collins, CO, United States
Species-specific responses to changes in precipitation can alter plant community structure and composition potentially altering ecosystem functioning. The latter will further feed back to climate change. Here, we synthesized results from more than 50 experimental studies that either increased or decreased precipitation in grasslands to assess productivity responses of different species and plant functional types (PFT) as well as changes in community structure. Our results showed that increased precipitation enhanced aboveground net primary production (ANPP) of the dominant PFT but had no effect on ANPP of the subordinate species. Similarly, decreased precipitation reduced ANPP of the dominant species but not that of subordinate species. Individual C3 species were highly responsive to alterations in precipitation, but C4 species were not. Altered precipitation had no effect on species richness, evenness or diversity. Overall, ANPP and belowground net primary productivity (BNPP) responded to both increased and reduced precipitation, but relative responses of ANPP to increased precipitation diminished with increasing mean annual precipitation (MAP) whereas the relative responses to reduced precipitation did not change with MAP. BNPP responses to altered precipitation did not vary with MAP. Our findings suggest that the dominant PFT in grasslands can be used as a proxy for community responses in ecosystem biogeochemical models. Further, grassland community composition and structure appear to be relatively stable in response to alterations in precipitation of the duration and magnitude encompassed by these experiments.