GP22A-01:
Revisiting Near-Seafloor Magnetics on the TAG Hydrothermal Site (26°N, MAR): Tectonic and Hydrothermal Implications

Tuesday, 16 December 2014: 10:20 AM
Florent Szitkar, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany and Jerome Dyment, Institut de Physique du Globe de Paris, Paris, France
Abstract:
We revisit the near seafloor magnetic anomaly for the TAG hydrothermal site presented by Tivey et al. (1993) taking advantage of more recent geological constraints from ODP Leg 158 drill holes across the hydrothermal mounds and high-resolution bathymetry. The dipolar magnetic anomaly associated with the site is better reduced to the pole assuming an inclination of 10° (instead of 44° expected at 26°N) for the magnetization vector. Such an observation suggests that basalt surrounding the site, which belongs to a strongly "faulted and fissured zone" (FFZ), has been rotated by ~53° along a N30°E horizontal axis (parallel to the MAR axis in this area) as a probable consequence of the detachment tectonics inferred in this area. The FFZ faults, together with the deeper detachment, focus and guide the hot ascending hydrothermal fluid. Magnetic forward modeling of the site shows that, although insufficient to explain the whole observed negative anomaly, the hydrothermal material - and more specifically the stockwork zone - is a significant cause of missing magnetization that contributes to about a third of the observed anomaly. The rest of the anomaly is accounted for by a deeper source possibly related to thermal demagnetization of an ascending hydrothermal pipe beneath the active part of the site. The significant contribution of the stockwork zone to the magnetic signature of TAG confirms that it is a common character of all type of hydrothermal sites, of potential interest for deep-sea mineral exploration.

Tivey, M.A., Rona, P.A., and Schouten H., 1993, Reduced crustal magnetization beneath the active mound, TAG hydrothermal field, Mid-Atlantic Ridge, at 26°N: Earth and Planetary Science Letters, v. 115, p. 101-115, doi:10.1016/0012-821X(93)90216-V.