MR23B-4352:
Consequences of Melt-Preferred Orientation for Magmatic Segregation in Deforming Mantle Rock

Tuesday, 16 December 2014
Richard F Katz1, Jesse Taylor-West2, Jane Allwright2, Yasuko Takei3, Chao Qi4 and David L Kohlstedt5, (1)University of Oxford, Oxford, United Kingdom, (2)University of Cambridge, DAMTP, Cambridge, United Kingdom, (3)University of Tokyo, Bunkyo-ku, Japan, (4)University of Minnesota, Minneapolis, MN, United States, (5)University of Minnesota Twin Cities, Minneapolis, MN, United States
Abstract:
In partially molten regions of the mantle, deviatoric stresses cause large-scale deformation and mantle flow. The same stresses also lead to preferential wetting of coherently oriented grain boundaries [DK97, T10]. This alignment is called melt-preferred orientation (MPO). Because of the contrast between the physical properties of melt and solid grains, MPO has the potential to introduce anisotropy into the mechanical and transport properties of the liquid/solid aggregate. Here we consider the possible consequences for (and of) anisotropic viscosity and permeability of the partially molten aggregate.

The consequences are evaluated in the context of laboratory experiments on partially molten rocks. The controlled experiments involve deformation of an initially uniform mixture of solid olivine and liquid basalt [KZK10]. The resultant patterns of melt segregation include two robust features: (i) melt segregation into bands with high melt fraction oriented at a low angle to the shear plane; and (ii) melt segregation associated with an imposed gradient in shear stress, in experiments where this is present. Although there are other reproducible features of experiments, these are the most robust and provide a challenge to models.

A theoretical model for the effect of MPO on mantle viscosity under diffusion creep is available [TH09] and makes predictions that are consistent with laboratory experiments [TK13,KT13,QKKT14,AK14]. We review the mechanics of this model and the predictions for flow in torsional and pipe Poiseuille flow, showing a quantitative comparison with experimental results. Furthermore, it is logical to expect MPO to lead to anisotropy of permeability, and we present a general model of tensorial permeability. We demonstrate the consequences of this anisotropy for simple shear deformation of a partially molten rock.

REFERENCES: 
DK97 = Daines & Kohlstedt (1997), JGR, 10.1029/97JB00393. T10 = Takei (2010), JGR, 10.1029/2009JB006568. KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TH09 = Takei & Holtzman (2009a), JGR, 10.1029/2008JB005850. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. KT13 = Katz & Takei (2013), JFM, 10.1017/jfm.2013.483. QKKT14 = Qi, Kohlstedt, Katz, Takei (in prep). AK14 = Allwright & Katz (2014), in revision for GJI.