A41O-05:
Impact of Deep Convection on UTLS Composition -New Observations from Recent Airborne Field Studies
Thursday, 18 December 2014: 9:00 AM
Laura Pan, National Center for Atmospheric Research, Boulder, CO, United States
Abstract:
Deep convection redistributes chemical trace gas species throughout the troposphere. Tropopause-penetrating deep convection injects water vapor and pollutants into the lower stratosphere. To obtain the necessary information for characterizing its role in chemistry-climate coupling, the impact of deep convection on UTLS ozone, water vapor, and short-lived organic species has been a key component of several recent airborne field campaigns. We present selected findings and observational highlights from two airborne field campaigns. They are the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment, conducted January-February 2014 over the western Pacific using the NCAR GV research aircraft, in collaboration with the UK FAAM BAe146 and the NASA Global Hawk, and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) experiment, conducted August-September 2013 over the north America using the NASA DC-8 and ER-2 research aircraft.