Examination of the Asian Monsoon: Ongoing Studies from IODP Expedition 346

Wednesday, 17 December 2014: 8:15 AM
Richard W Murray, Boston Univ, Boston, MA, United States, Ryuji Tada, University of Tokyo, Bunkyo-ku, Japan and Carlos A Alvarez Zarikian, Texas A&M University, College Station, TX, United States
IODP Expedition 346 (Asian Monsoon) tested the hypothesis that Plio-Pleistocene uplift of the Himalaya and Tibetan Plateau, and/or emergence and growth of the northern hemisphere ice sheets and establishment of the two discrete modes of Westerly Jet circulation, is the cause of the millennial-scale variability of the East Asian summer monsoon (EASM) and amplification of Dansgaard-Oeschger cycles. We also examined whether the nature and strength of flow through the Tsushima Strait (which is strongly affected by EASM precipitation, sea level changes, and EAWM cooling) influenced surface and deepwater conditions of the Japan, Yamato, and Ulleung Basins.

During only six weeks of drilling, Expedition 346 recovered 6135.3 m of core, which established an IODP record for the amount of recovered material. Because of recent advances in drilling technology and newly developed analytical tools, we were able to examine records that were impossible to acquire even a few years ago. The newly engineered half piston core system recovered the deepest piston core in DSDP/ODP/IODP history (490.4 m in Hole U1427A), which was reached by continuous piston coring from the seafloor.

These advances delivered new surprises. We recovered pristine dark-light laminae from approximately 8 Ma sediment from 275 m below the seafloor at Site U1425 (Yamato Rise) and from 210 m below the seafloor (10-12 Ma) at Site U1430 in the Ulleung Basin. Aggressive sampling for geochemistry provided important constraints on the diagenetic and chemical environments throughout these marginal seas, and yet did not negatively compromise paleoceanographic objectives. We are extending earlier pioneering results of the Quaternary dark and light layers in these basins and which record variations of EASM precipitation over South China. Drilling in the East China Sea is providing an excellent record of EASM precipitation because its surface water salinity and temperature during summer is significantly influenced by Yangtze River discharge. Ash records are providing calibrated stratigraphic control and improving understanding of arc history. Interpreting these and other results in the context of other IODP drilling expeditions, such as Expedition 349 to the South China Sea, will be critical to develop a holistic understanding of the Asian monsoon system.