GC53C-0542:
Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

Friday, 19 December 2014
William D Graham, NASA, Stennis Space Center, MS, United States, Joseph Spruce, Computer Sciences Corporation, Stennis Space Center, MS, United States, Kenton W Ross, NASA Langley Research Center, Hampton, VA, United States, Jerry Gasser, Naval Research Lab Stennis Space Center, Stennis Space Center, MS, United States and Nancy Grulke, US Forest Service Prineville, Prineville, OR, United States
Abstract:
Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location’s daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined near real-time, as MODIS NDVI, 8-day composite data become available, affording an effective forecasting and hindcasting tool.