Transformation Pathways through the Land-water Geosphere in Permafrost Regions

Monday, 15 December 2014: 4:00 PM
Georgia Destouni, Stockholm University, Stockholm, Sweden
Arctic land-water undergoes and participates in multiple climate-driven and other (natural and direct human-driven) environmental exchanges and changes (Figure 1). A bits-and-pieces approach to these may miss essential aspects of change propagation and transformation by land-water across its multiple components (soil water, groundwater, hyporheic water, streams/rivers, wetlands and lakes) and from/to other geospheres (atmosphere and its climate change drivers, cryosphere and its permafrost segment, as well as the anthroposphere/technosphere, geosphere/pedosphere, marine hydrosphere and biosphere). This paper synthesizes results from recent modeling and observational studies of land-water flow and dissolved carbon transport in permafrost regions, departing from a new conceptualization of the land-water geosphere as a scale-free catchment-wise organized system (Figure 1), emphasizing several key new system aspects compared to traditional hydrosphere/water cycle view. Among these new aspects, we particularly investigate here the role of land-water flow and transport pathways as system coupling agents, with focus on their variability and change with varying permafrost conditions and permafrost thaw in a warming climate. Utilizing the conceptualization of land-water as a continuous yet structured geosphere, following the proposed flow-transport pathways of change propagation-transformation, we identify patterns of permafrost-related and other changes in Arctic hydrology.