V41E-07:
The Building of the Archean Superior Craton: Thermal Perspective
Abstract:
The building of a craton involves the extraction of continental crust from the Earth's mantle and the lateral accretion of juvenile volcanic terranes. Ascertaining which conditions allow a newborn continental assemblage to survive requires information on its mechanical strength, which depends on the amount and vertical distribution of radioactive elements in the crust. There is thus a connection between crust formation mechanisms and a successful amalgamation process.To address outstanding questions concerning Archean cratons, the Superior province in Canada is the perfect region because it contains a well preserved geological record of accretion that provides compelling evidence for plate tectonic processes at 2.7 Ga. At almost the same time, the rate of continental growth decreased significantly, which may result from either slower crust formation or enhanced destruction through erosion and subduction. These issues are linked to the strength of the newborn continent.
The extensive heat flow data set now available in the Superior Province reveals a clear demarcation between a chemically depleted and differentiated craton core and weakly differentiated enriched juvenile accreted terranes. The Superior craton was thus made of a strong core surrounded by weak terranes. This dichotomy implies that the accretion process could not involve complex imbrication of the accreted belts into the craton core. Subsequently, the craton may have been protected from convective disruption or delamination by its weak margins. Differences between the craton core and accreted terranes may be due to different crustal extraction processes, such as melting in a mantle plume or magmatism in a subduction zone. If subduction started at about 3 Ga, as advocated by several authors, the assembly and survival of large cratons may well be a consequence of this key shift in mantle activity. Alternatively, the chemical depletion of the craton core may be due to a prolonged history of internal differentiation leading to an enriched upper crust that gets eroded away.