The Fate of Molecular Markers in Soils and Their Implications for Soil Carbon Cycling

Monday, 15 December 2014: 8:00 AM
Guido LB Wiesenberg, University of Zurich, Zurich, Switzerland
During the past decades molecular markers were discovered to be of diagnostic character for tracing the origin and fate of organic matter in soils. Molecular proxies themselves and their combination with compound-specific isotope analyses became powerful tools to distinguish between various biogenic and anthropogenic sources of organic matter and to trace carbon turnover at a molecular level. In the meantime various field and laboratory experiments provided deeper insight into soil organic matter dynamics at a molecular scale. We learnt from these experiments that carbon turnover at a molecular scale occurs in a similar time frame like for bulk soil organic matter and that selective preservation is not an issue for most coumpounds in active soils, but e.g. in fossil soils. Nevertheless, e.g. plant wax-derived alkanes and root-derived suberin markers point to a slower turnover of specific compounds. Recently, molecular markers enabled deciphering root-derived processes that occur in the rhizosphere of living and dead roots within the soil or even in the deep subsoil (up to several meters below the soil surface). Thus, the proposed carbon sequestration by roots in subsoils is not necessarily relevant in the long-term on a decadal or centennial scale. Although molecular markers were not determined to be valuable tools to sequester carbon in the soil, they strongly help elucidating processes relevant for cycling of bulk organic matter from the soil surface towards the deep subsoil.