V13A-4761:
Noble Gas Partitioning in Bravo Dome Natural Magmatic CO2 field: Implications for Crustal CO2 accumulations and Gas Migration

Monday, 15 December 2014
Kiran Sathaye and Marc A Hesse, University of Texas at Austin, Austin, TX, United States
Abstract:
We report a combination of field data, experiments, and analytical theory investigating the dissolution of the Bravo Dome natural CO2 field into the underlying brine aquifer. The Bravo Dome reservoir contains 1.3Gt±0.6Gt of magmatic CO2 trapped above a shallow brine aquifer. We compute that 22%±7% of the original CO2 has dissolved since its migration, and that the CO2 entered between 1.2Ma and 1.5Ma. The CO2 also contains trace amounts of noble gases, used by previous authors and this study to identify the migration direction and quantify mass of CO2 dissolved. We present a simple analytical model and experimental verification showing that noble gases in even trace amounts will not move uniformly with a migrating gas plume in the crust. Due to varying degrees of solubility in groundwater, the more volatile gases will tend to enrich at the front of the migrating CO2 plume. This effect can be used to improve interpretations of subsurface noble gas concentration gradients.