Nitrogen Loss Processes and Nitrous Oxide Turnover in Oceanic Oxygen Minimum Zones

Tuesday, 16 December 2014: 5:00 PM
Bess B Ward, Princeton University, Geosciences, Princeton, NJ, United States
Nitrogen is an essential element for life and the maintenance of all ecosystems. For many ecosystems, both aquatic and terrestrial, nitrogen is the element most likely to limit the amount and rate of production. But just as ecosystems can suffer from too little nitrogen, they are also sensitive to too much nitrogen, which leads to eutrophication and structural changes in food webs. Thus the processes by which nitrogen is removed are as critical to our understanding of ecosystem function as are those by which it is added. Nitrogen loss processes in the open ocean have been the focus of research and discovery in recent years. Long thought to be dominated by the bacterial respiratory process of denitrification, N loss is now also known to occur by anaerobic ammonium oxidation (anammox). We now understand that the ratio of the two processes is controlled by the quality and quantity of organic matter supplied to the anoxic waters of the ocean’s major oxygen deficient zones. Coastal environments are also major sites of N loss but excess N loading from land often ameliorates the direct dependence of anammox and denitrification on organic matter composition. The ratio is important partly because of side products: Denitrification is a significant source and sink for nitrous oxide (N2O), while anammox has no significant contribution to N2O biogeochemistry. With the anthropogenic flux of CFCs at least mostly under control, N2O emissions to the atmosphere are the greatest contribution to ozone destruction, and they also contribute to greenhouse warming. Both anthropogenic and natural sources contribute to N2O emissions, and natural sources are sensitive to anthropogenic forcing. Our direct measurements of N2O production and consumption in the ocean agree with modeling results that have implicated multiple microbial processes and complex physical and biological control of N2O fluxes in the ocean.