Zircon Age Distributions Provide Magma Fluxes in the Earth’s Crust

Friday, 19 December 2014: 2:40 PM
Luca Caricchi, Guy Simpson and Urs Schaltegger, University of Geneva, Earth Sciences, Geneva, Switzerland
Magma fluxes control the growth of continents, the frequency and magnitude of volcanic eruptions and are important for the genesis of magmatic ore deposits. A significant part of the magma produced in the Earth’s mantle solidifies at depth and this limits our capability of determining magma fluxes, which, in turn, compromises our ability to establish a link between global heat transfer and large-scale geological processes. Using thermal modelling in combination with high precision zircon dating we show that populations of zircon ages provide an accurate mean to retrieve magma fluxes. The characteristics of zircon age populations vary significantly and systematically as function of the flux and total volume of magma accumulated at depth. This new approach provides results that are identical to independent determinations of magma fluxes and volumes of magmatic systems. The analysis of existing age population datasets by our method highlights that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at characteristic average fluxes.