V11D-03:
Carbon Storage in the Mid- to Deep- Upper Mantle Constrained by Phase Relations in the Fe-Ni-Cu-C-S system

Monday, 15 December 2014: 8:30 AM
Kyusei Tsuno and Rajdeep Dasgupta, Rice University, Houston, TX, United States
Abstract:
Carbon is a key element for evolution of terrestrial planets as it has influence on the chemistry and habitability of surficial environment as well as impact on mantle processes such as partial melting and element mobility. Because mantle is arguably the largest reservoir of extractable carbon, the stable form of carbon in various mantle domains needs to be constrained. In the reduced, mid- to deep- upper mantle, the host of deep carbon is graphite/diamond and/or Fe-Ni-bearing alloy melt [1]. However, high solubility of carbon in Fe-Ni alloy melt [2] suggests that diamond saturation may be restricted only to C-rich mantle domains. But such suggestions do not take into account the role of sulfides, which must interact with alloy-carbon mantle subsystems. In order to constrain the stable forms of carbon in the reduced mantle where Ni-rich alloy is likely present [3], we explore the phase relations and C solubility in Ni-rich portion of the Fe-Ni-±Cu-C-S systems.

Experiments were performed in a MgO capsule using a multi-anvil with six starting mixes (Ni/(Fe+Ni) wt. ratio of 0.50-0.61, 8-16 % wt.% S, 2.0-2.5 wt.% C, and 0-0.7 wt.% Cu) at 6-8 GPa and 800-1400 °C. Low-temperature runs for all starting mixes contain C-bearing, solid Fe-Ni alloy + alloy melt + graphite, and solid alloy-out boundary is constrained, for example, at 1000-1050 °C at 6 GPa and 900-1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the alloy melt (0.8~2.1 wt.% at 8 GPa and 1400 °C) decreases with increasing S content from 8 to 24 wt.%, increasing pressure for S-rich (18-24 wt.%) melt, and decreasing Ni/(Fe+Ni) from 0.65 to 0.53.

For a mantle with ~0.1 wt.% alloy (~250 km depth) [3], diamond is likely stable coexisting with an S-rich alloy melt for ≥10 ppm bulk C. This is owing to the influence of S, which suppresses the incorporation of C in the alloy melt to stabilize diamond. Our results thus imply that diamond is a stable form of carbon even in depleted mantle domains similar to that of MORB source, i.e., without the necessity of excess C from derived from deeply subducted oceanic crust [4]. [1] Dasgupta (2013) RiMG 75, 183-229. [2] Rohrbach et al. (2014) EPSL 388, 211-221. [3] Frost & McCammon (2008) Annual Rev Earth Planet Sci 36, 389-420. [4] Rohrbach and Schmidt (2011) Nature 472, 209-212.