A21G-3108:
A Direct Estimate of Climate Sensitivity from Atmospheric Structure

Tuesday, 16 December 2014
Andrew A Lacis, NASA Goddard Space Flight Center, New York, NY, United States; NASA Goddard Institute for Space Studies, New York, NY, United States
Abstract:
The nominal equilibrium climate sensitivity of about 3°C for doubled CO2 is obtained from direct climate model calculations and from simulations of the historical surface temperature record. A similar value of equilibrium climate sensitivity has been inferred from the geological ice core record. A further independent estimate of climate sensitivity can be derived directly from the atmospheric temperature, cloud, and absorbing gas structure. Attribution of individual contributions to the terrestrial greenhouse effect by individual atmospheric constituents shows that water vapor and clouds account for about 75% of the total greenhouse effect, while CO2 and the other minor non-condensing green house gases account for the remaining 25%. It is generally understood that water vapor and cloud contributions to the greenhouse effect arise as feedback effects, and that the non-condensing greenhouse gas contribution can be identified as the radiative forcing component. From this alone, a climate feedback sensitivity of f = 4, or about 5°C for doubled CO2 can be inferred. Accounting further for the negative temperature lapse rate feedback that is not directly included in the attribution analysis, and allowing for a residual non-condensing component of the water vapor feedback, brings the equilibrium climate sensitivity that is inferred from atmospheric structural analysis to the 3°C range for doubled CO2, in good agreement with the equilibrium climate sensitivity that is obtained from comparisons to historical and geological global temperature changes.