V11E-01:
Submarine Hydrothermal Systems – No Two Fields Are Alike

Monday, 15 December 2014: 8:00 AM
Deborah S Kelley, University of Washington Seattle Campus, Seattle, WA, United States
Abstract:
Over 300 hydrothermal systems have been discovered since the first finding of Galapagos vents over three decades ago. The size, morphology, chemistry and associated biology show a rich diversity that is in part governed by their host rocks and tectonic setting. Each vent system is unique in terms of the morphology of black smoker edifices and associated diffuse flow, which suggests that local processes and feedback loops govern the nature and evolution of these dynamic systems. In fast-spreading environments (e.g. EPR), vent fields are spaced far apart and individual structures are small in number and size. In contrast, to date, the highest concentrations of fields per kilometer of ridge segment, and the largest individual black smokers occur in intermediate-spreading systems (e.g. Endeavour hosting 45 m-tall chimneys). The largest complexes occur in intermediate and slow-spreading environments (e.g. TAG at 200 m across). The highest temperature vents are transient, with temperature excursions at or above the critical point of seawater. Extremely high temperatures are associated with diking and eruptive events that likely vaporize subsurface fluids, forcing them across the two-phase boundary briefly. Along slow- and ultraslow-spreading ridges, the character of vents is strongly controlled by faulting, in particular, long-lived detachment faults that expose variably deformed and altered ultramafic rocks. Here, vent systems evolve from high-temperature black smokers within the axial valley with fluids rich in CO2, to black smokers with mantle and basaltic signatures along the axial valley walls, to end member systems such as the Lost City Field with chimneys and fluid chemistries never before seen: 60 m tall limestone towers that vent 90°C, metal-poor, pH 9-11 fluids devoid of CO2, yet rich in H2, CH4 and other low molecular weight hydrocarbons formed abiotically. This relatively stable environment, free from volcanic events, promotes venting for >150,000 years.