NH23B-04:
Tsunamis: Global Exposure and Local Risk Analysis

Tuesday, 16 December 2014: 2:25 PM
Carl Bonnevie Harbitz1, Finn Løvholt1, Sylfest Glimsdal1, Nick Horspool2, Jonathan Griffin3, Gareth Davies3 and Regula Frauenfelder1, (1)Norwegian Geotechnical Institute, Oslo, Norway, (2)GNS Science, Risk and Society, Lower Hutt, New Zealand, (3)Geoscience Australia, Canberra, Australia
Abstract:
The 2004 Indian Ocean tsunami led to a better understanding of the likelihood of tsunami occurrence and potential tsunami inundation, and the Hyogo Framework for Action (HFA) was one direct result of this event. The United Nations International Strategy for Disaster Risk Reduction (UN-ISDR) adopted HFA in January 2005 in order to reduce disaster risk. As an instrument to compare the risk due to different natural hazards, an integrated worldwide study was implemented and published in several Global Assessment Reports (GAR) by UN-ISDR. The results of the global earthquake induced tsunami hazard and exposure analysis for a return period of 500 years are presented. Both deterministic and probabilistic methods (PTHA) are used. The resulting hazard levels for both methods are compared quantitatively for selected areas. The comparison demonstrates that the analysis is rather rough, which is expected for a study aiming at average trends on a country level across the globe. It is shown that populous Asian countries account for the largest absolute number of people living in tsunami prone areas, more than 50% of the total exposed people live in Japan. Smaller nations like Macao and the Maldives are among the most exposed by population count. Exposed nuclear power plants are limited to Japan, China, India, Taiwan, and USA.

On the contrary, a local tsunami vulnerability and risk analysis applies information on population, building types, infrastructure, inundation, flow depth for a certain tsunami scenario with a corresponding return period combined with empirical data on tsunami damages and mortality. Results and validation of a GIS tsunami vulnerability and risk assessment model are presented. The GIS model is adapted for optimal use of data available for each study. Finally, the importance of including landslide sources in the tsunami analysis is also discussed.