Velocity and Energy Distributions of Water Group Ion Around the Enceladus Plume

Friday, 19 December 2014
Shotaro Sakai, Thomas Cravens, Sriharsha Pothapragada and Abhinav Kumar, University of Kansas, Lawrence, KS, United States
Enceladus has a dynamic plume on its south pole which is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation and by electron impacts and extends throughout the inner magnetosphere of Saturn. The dust is negatively charged and forms the E ring. Hence, the inner magnetosphere within 10 RS contains a complex mixture of plasma, neutral gas and dust. Cassini observations show that the plasma velocities are less than the co-rotation velocity. The velocity and energy distributions of this need to be explained in order to understand the inner magnetospheric plasma physics. We have investigated the velocity and energy distributions of water group ions in the vicinity of Enceladus using test particle and Monte Carlo methods including collisional processes such as charge exchange and ion-neutral chemical reaction. The model results will be constrained by neutral and ion composition data from the Cassini Ion and Neutral Mass Spectrometer and ion energy spectra from the Plasma Spectrometer (CAPS). We will also discuss related plasma processed in the Enceladus torus.