Climate Controls on Last Glacial Maximum to Early Holocene Glacier Extents in the Rwenzori Mountains, Uganda-Democratic Republic of Congo

Friday, 19 December 2014
Margaret Scott Jackson, Dartmouth College, Hanover, NH, United States, Meredith A Kelly, Dartmouth College, Department of Earth Sciences, Hanover, NH, United States, James M Russell, Brown University, Providence, RI, United States, Margaret Baber, Dartmouth College, White River Junction, VT, United States and Shannon E Loomis, University of Texas at Austin, Austin, TX, United States
The climate controls on past and present tropical glacier fluctuations are unclear. Here we present a chronology of past glacial extents in the Rwenzori Mountains (~1ºN, 30ºE), on the border of Uganda and the Democratic Republic of Congo, and compare this with local and regional paleoclimate records to infer the climate controls on glaciation. The Rwenzori Mountains host the most extensive glacial system in Africa and are composed of quartz-rich bedrock lithologies, enabling 10Be dating. Our dataset includes thirty 10Be ages of boulders on moraines estimated to have been deposited between the end of the last glacial period and early Holocene time. In the Mubuku Valley, eight 10Be ages of large (~50-150 m relief) lateral moraines that extend down to ~2000 m asl indicate that deposition occurred at ~23.4 ka (n=4) and ~20.1 ka (n=4), contemporaneously with the global Last Glacial Maximum (LGM). Local and regional paleoclimate records document dry, cool conditions in East Africa during this time. Therefore, we suggest that cooler temperatures were a primary influence on the LGM glacial extents. Upvalley from these samples, six 10Be ages of boulders on moraines (between 3450 and 3720 m asl) document stillstands or readvances of glacier ice at ~14.3 ka (n=2), ~13.2 ka (n=2), and ~11.1 ka (n=2). In the nearby Nyagumasani Valley sixteen 10Be ages of boulders on moraines at similar elevations (3870-4020 m asl) indicate stillstands or readvances at ~11.5 ka (n=4), ~10.6 ka (n=4), and ~10.5 ka (n=4). Local and regional paleoclimate records indicate dry conditions during Younger Dryas time, wet conditions during early Holocene time, and no significant late-glacial temperature reversal. Thus, the relationship between glacier advance and climate conditions during late-glacial time remains enigmatic. We continue to develop the moraine chronology in order to improve our interpretations of climate controls on glacier fluctuations during late-glacial to early Holocene time.