B14A-03:
Predicting the future by explaining the past: constraining carbon-climate feedback using contemporary observations

Monday, 15 December 2014: 4:30 PM
Scott Denning, Dept. of Atmospheric Science, Fort Collins, United States
Abstract:
The carbon-climate community has an historic opportunity to make a step-function improvement in climate prediction by using regional constraints to improve mechanistic model representation of carbon cycle processes. Interactions among atmospheric CO2, global biogeochemistry, and physical climate constitute leading sources of uncertainty in future climate. First-order differences among leading models of these processes produce differences in climate as large as differences in aerosol-cloud-radiation interactions and fossil fuel combustion. Emergent constraints based on global observations of interannual variations provide powerful constraints on model parameterizations. Additional constraints can be defined at regional scales. Organized intercomparison experiments have shown that uncertainties in future carbon-climate feedback arise primarily from model representations of the dependence of photosynthesis on CO2 and drought stress and the dependence of decomposition on temperature. Just as representations of net carbon fluxes have benefited from eddy flux, ecosystem manipulations, and atmospheric CO2, component carbon fluxes (photosynthesis, respiration, decomposition, disturbance) can be constrained at regional scales using new observations. Examples include biogeochemical tracers such as isotopes and carbonyl sulfide as well as remotely-sensed parameters such as chlorophyll fluorescence and biomass. Innovative model evaluation experiments will be needed to leverage the information content of new observations to improve process representations as well as to provide accurate initial conditions for coupled climate model simulations. Successful implementation of a comprehensive benchmarking program could have a huge impact on understanding and predicting future climate change.