S33D-01:
Imaging Ancient Sutures with EarthScope Transportable Array Magnetotelluric Data
Wednesday, 17 December 2014: 1:40 PM
Gary D Egbert, Oregon State University, Corvallis, OR, United States
Abstract:
Magnetotellurics (MT) provides a powerful geophysical tool for imaging of ancient suture zones, which are frequently marked by elongated zones of very low resistivity. These conductive anomalies, which can extend to great depths and have apparently persisted for several billion years, most likely result from graphite and sulfides deeply emplaced and remobilized, through subduction, accretion and orogenesis. The Earthscope MT transportable array provides a unique broad-scale view of sutures in the continental US. In the northwestern US subvertical conductive features bound all of the major cratonic blocks. These can be identified with the Cheyenne Belt between the Wyoming Craton (WC) and Yavapai Terranes (YT), the Great Falls Tectonic Zone between WC and the Medicine Hat Block (MHB), and the Vulcan Structure of southern Alberta between MHB and the Hearne Craton. In all cases the conductive anomalies extend well into the mantle lithosphere. The more recent MT TA footprint in the north-central US (surrounding the Mid-Continent Rift (MCR)) also reveals conductive signatures of ancient sutures. The most prominent lies south of Lake Superior, just north of the Niagara Fault (NF), and can be associated with the Penokean Orogeny (~1.85 Ga). A second, further south beneath Iowa and western Wisconsin, just south of the Spirit Lake tectonic zone (SLtz), can be identified with YT accretion (~1.75 Ga). Both of these sutures are cleanly cut by the MCR. The break in the anomalies is narrow (comparable to the surface expression of the MCR) indicating that rifting impacts on the entire crustal section were highly localized. The south-dipping NF conductive anomaly extends from surface outcrop to at least the Moho. The SLtz anomaly is north-dipping, extending from mid-crust through the Moho. In both cases there is some evidence for a modestly conductive layer (likely carbon) thrust to mid-lithospheric depths within the overriding terrane.