Towards Resolving the Paradox of Antarctic Sea Ice: A New Integrated Framework for Observing the Antarctic Marginal Ice Zone

Monday, 15 December 2014: 3:10 PM
Guy Darvall Williams, University of Tasmania, Institute of Marine and Antarctic Studies, Hobart, TAS, Australia
Antarctic sea ice distribution, a canary in the coal mine for climate change in the Southern Hemisphere, is controlled by the marginal ice zone (MIZ). The MIZ is the dynamic outer part of the sea-ice zone, where it interacts with the high-energy open ocean and is strongly affected by waves and storms. As an interface between ocean and atmosphere with extreme vertical and horizontal temperature gradients and large variations in mechanical properties, the MIZ is a complex system that evolves with, and impacts upon, the advancing/receding ice edge. More than a zone, it is a migratory transition in 'phase space' that biannually passes across the entire Antarctic SIZ. During the advance phase of sea-ice seasonality, and under freezing conditions, wave-induced pancake-ice formation can lead to rapid ice-edge advance. During the retreat phase, the dynamic break-up and modification of sea ice by passing storms, winds and waves greatly modifies the floe-size distribution within the MIZ, to create smaller floes that melt more rapidly and accelerate sea-ice retreat as spring progresses.

Inspired by the current Arctic MIZ efforts, new fieldwork is proposed to resolve the key characteristics of the Antarctic MIZ and the processes controlling its extent. Combining new autonomous observation technology with ship-based techniques, integrated experiments are being designed to advance our understanding of the MIZ and its role in driving seasonal sea ice advance and retreat around Antarctica. The proposed project provides a unique opportunity to develop an observational, analytical, and science-policy framework for coordinated monitoring of sea ice in both the northern and southern hemispheres, with implications for forecasting, monitoring, and prediction that are essential with increasingly dynamic and variable polar climate systems.