V33B-4844:
Thermal and Chemical Gradients Along the Slab Interface Control Across-Arc Patterns in Compositions of Primitive Arc Magmas
Abstract:
Several studies of primitive mafic arc rocks have shown systematic across-arc variations in the volatile and trace element contents of primary arc magmas. Most of these studies used olivine-hosted melt inclusions in mafic scoria that had been transported rapidly to the surface from depth. These inclusions bypass upper crustal modifications, and constrain the chemical composition of parental magmas in equilibrium with the mantle. The patterns preserved in these melts can be used to explore spatial variation in the volatile-rich flux that enters the mantle wedge, sourced from the subducting plate. Variability in the composition of this flux provides information about fluid and melt transport through the mantle wedge, and of the mineral breakdown or melting processes occurring within the downgoing slab.We analysed olivine-hosted melt inclusions from scoria cones in southern Chile (40 - 42 S), including picrites with unzoned Mg-rich olivine (Fo88) from volcan Apagado. Samples show systematic variations in water, CO2, and trace element content that suggests that the primary-melt chemistry reflects the pattern of element release at the subducting slab interface. This down-slab chemical gradient is consistent with predictions from modelling and experiments. Down-slab, the flux feeding the arc magmas becomes progressively water-poor over a distance of a few km. We suggest that this change marks the onset of significant water-fluxed melting of sediment at the downgoing slab-surface. The short length scale of the across-arc chemical patterns in southern Chile is surprising. The fact that such changes are preserved within our sampled rocks suggests that there is limited across-arc mixing and focussing of fluids or melts as they ascend through the mantle wedge. Our results suggest that slab-surface inputs exert a first-order control on arc-magma chemistry. The chemical patterns that we observe are replicated in other arcs (e.g. Kamchatka, Izu-Bonin), despite the plate-scale thermal differences between these subduction zones. These similar patterns between diverse arcs imply that sub-arc slab-surface temperature ranges may be similar in all three settings. This unexpected result also suggests that slab surface temperature influences the location of volcanic arcs in subduction zones.