H31H-0729:
An Empirical Approach to Predicting Effects of Climate Change on Stream Water Chemistry

Wednesday, 17 December 2014
John R Olson, Utah State University, Smithfield, UT, United States; Desert Research Institute Las Vegas, Division of Hydrologic Sciences, Henderson, NV, United States and Charles P Hawkins, Utah State University, Department of Watershed Sciences, Logan, UT, United States
Abstract:
Climate change may affect stream solute concentrations by three mechanisms: dilution associated with increased precipitation, evaporative concentration associated with increased temperature, and changes in solute inputs associated with changes in climate-driven weathering. We developed empirical models predicting base-flow water chemistry from watershed geology, soils, and climate for 1975 individual stream sites across the conterminous USA. We then predicted future solute concentrations (2065 and 2099) by applying down-scaled global climate model predictions to these models. The electrical conductivity model (EC, model R2 = 0.78) predicted mean increases in EC of 19 µS/cm by 2065 and 40 µS/cm by 2099. However predicted responses for individual streams ranged from a 43% decrease to a 4x increase. Streams with the greatest predicted decreases occurred in the southern Rocky Mountains and Mid-West, whereas southern California and Sierra Nevada streams showed the greatest increases. Generally, streams in dry areas underlain by non-calcareous rocks were predicted to be the most vulnerable to increases in EC associated with climate change. Predicted changes in other water chemistry parameters (e.g., Acid Neutralization Capacity (ANC), SO4, and Ca) were similar to EC, although the magnitude of ANC and SO4 change was greater. Predicted changes in ANC and SO4 are in general agreement with those changes already observed in seven locations with long term records.