A43J-08:
Development and Evaluation of the Biogenic Emissions Inventory System (BEIS) Model v3.5

Thursday, 18 December 2014: 3:25 PM
Jesse O Bash1, Kirk R Baker2 and George Pouliot1, (1)U.S. EPA, NERL, RTP, NC, United States, (2)Environmental Protection Agency Research Triangle Park, Research Triangle Park, NC, United States
Abstract:
Atmospheric biogenic volatile organic compounds (BVOC) influences ozone and organic aerosol formation and can enhance the impact that anthropogenic pollutants have on ambient air-quality and climate. BVOC emissions are estimated to be approximately an order of magnitude higher than anthropogenic sources of volatile organic compounds. Despite the importance of BVOC emissions on air-quality and climate, considerable uncertainty remains in the parametrization emission algorithms and emission factors from different land uses and vegetation species. We will present three updates to the the BEIS model. (1) The BEIS canopy model has been updated with explicit estimates of leaf temperature coupled to the driving meteorological model’s energy balance implemented in. (2) The Biogenic Emission Landuse Database (BELD) was updated with year specific satellite derrived land use, U.S. Department of Agriculture (USDA) crop survey data, and U.S. Forest Service forest Forest Inventory Analyssis (FIA) survayed tree speceis to develop a tree species specific land use data set. (3) A survey of published flux measurements were used to update the BEIS BVOC normalized emission factors. Incremental updates to the BEIS model are evaluated against surface and aircraft based field campain measurements and network observations in Community Multiscale Air Quality (CMAQ) model v5.0.2 simulations. Prelimilar model simulations result in improvements in model O3, isoprene, oxidized nitrogen, and aerosol performance over the contenental U.S.