NG32A-04:
Exploring reanalysis application for the purposes of climatological applications at regional scale
Abstract:
Recent advances in reanalysis methods yield new tools for climatological application. Here we use applications in Germany to discuss methodological issues at regional scale. Especially in the field of renewable energy planning and production there is a need for climatological information across all spatial scales, i.e., from climatology at a certain site to the spatial scale of national renewable energy production. Also, there is the need for the temporal resolution between the scales of a few minutes up to decadal changes.We explore the spatio-temporal scales where reanalyses can be used with benefit together with the traditional approaches which are based on station measurements only. Reanalyses can provide valuable additional information on larger scale variability, e.g. multi-annual variation over Germany. However, the change in the observing system, model errors and biases have to be carefully considered. On the other hand, the ground-based observation networks suffer from change of the station distribution, changes in instrumentation, measurements procedures and quality control as well as local changes which might modify their spatial representativity. All these effects might often been unknown or hard to characterize, although plenty of the meta-data information has been recorded for the German stations.
European research activities on global and regional reanalysis are supported by the Framework Program 7 (FP7) of the European Commission as a preparation activity for the European COPERNICUS climate change service.
Here we start from the user requirements for reanalyses as they were collected in the FP7 project CORE-CLIMAX. Second, we give an overview over the methods to determine whether a specific reanalysis is fit for a certain purpose (discussed in FP7 projects CORE-CLIMAX and UERRA) . Thirdly, we compare for an example application the feedback statistics from global (ERA-Interim) and regional (HErZ – COSMO) reanalyses and show which conclusion can be drawn. Finally, the wind climatologies derived from the different reanalyses (ERA-Interim, ERA-20C, HErZ-COSMO) are compared with point measurements and gridded field climatologies derived from ground-based stations, illustrating the added value of the reanalysis fields.