NH41C-02:
Mechanics-Based Definition of Safety Factors Against Flow Failure in Unsaturated Shallow Slopes

Thursday, 18 December 2014: 8:15 AM
Giuseppe Buscarnera and Josè Lizarraga-Barrera, Northwestern University, Evanston, IL, United States
Abstract:
Physical models for landslide forecasting rely on the combination of hydrologic models for water infiltration and stability criteria based on infinite slope mechanics. Such concepts can be used to derive safety factors for shallow landsliding, in which the mobilization of the soil cover is associated with the attainment of critical values of pore water pressures expressed as a function of the frictional strength. While such models capture the role of important geomorphic features and geotechnical properties, their performance depends on the validity of the postulate of frictional failure. As a result, the safety factors do not to consider a broader range of solid-fluid interactions promoting different slope failure mechanisms, such as flow slides. This work combines principles of soil stability, unsaturated soil mechanics and plasticity theory to derive an alternative set of safety factors. While frictional slips are included in the study as a particular case, the proposed analytical methodology can also be applied to cases in which an increase in degree of saturation promotes liquefaction instabilities, i.e. possible transitions from solid- to fluid-like response. The study shows that the incorporation of principles of unsaturated soil mechanics into slope stability analyses generates suction-dependent coefficients that alter the value of the safety factors. As a result, while the proposed approach can still be combined with standard hydrologic models simulating the evolution of pore pressures in the near-surface, it can also provide a spatially distributed assessment of evolving safety conditions in landscapes susceptible to landslides of the flow type.