H34B-05:
Life in the Treetops: Drought Tolerance and Water Balance of Canopy Epiphytes in a Tropical Montane Cloud Forest

Wednesday, 17 December 2014: 5:10 PM
Sybil G. Gotsch1, Nalini Nadkarni2, Alexander Darby1, Mackenzie Dix1, Andrew Glunk1, Kenneth Davidson1 and Todd E Dawson3, (1)Franklin and Marshall College, Lancaster, PA, United States, (2)University of Utah, Biology, Salt Lake City, UT, United States, (3)University of California Berkeley, Berkeley, CA, United States
Abstract:
Tropical montane cloud forests (TMCFs) inhabit regions rich in biodiversity that play an important role in the local and regional water cycle. Canopy plants such as epiphytes and hemiepiphytes are an important component of the biodiversity in the TMCF and therefore play a significant role in the carbon, nutrient and water cycles. With only partial or no access to resources on the ground, canopy plants may be vulnerable to changes in climate that increase canopy temperatures and decrease atmospheric humidity or precipitation inputs. Despite their importance in the TMCF, there is little information regarding drought tolerance and water balance in this community. In this study we quantified variation in functional traits and water relations in 12 species of epiphytes and hemiepiphytes in a Costa Rican TMCF. We also generated pressure-volume curves and xylem vulnerability curves that we used as indicators of drought tolerance. Lastly, we determined the capacity for foliar water uptake in the laboratory and measured whole-plant transpiration in the field. We found that all species had a high turgor loss point (ψTLP), high vulnerability to cavitation (P50), and low bulk elastic modulus (εmax, i.e. high cell wall elasticity). These results indicate that capacitance may be high in canopy plants and that stored water may help to maintain high leaf water potentials during dry periods. We also found that all species had the capacity for foliar uptake and that this process contributed substantially to their water status and water balance. On average, foliar uptake contributed to the reabsorption of 70% of the water transpired over a 34-day period at the beginning of the dry season. Our results indicate that canopy plants can mitigate water loss substantially, but they may be vulnerable to changes in the overall precipitation patterns or increases in cloud base heights.