G42A-03:
Multi-temporal InSAR measurement of interseimic motion on the eastern Tibet border
Thursday, 18 December 2014: 10:50 AM
Marie-Pierre Doin, Cecile Lasserre, Pengchao He and Julia de Sigoyer, ISTerre, Université Joseph Fourier, Grenoble, France
Abstract:
We use here SAR interferometry using archived Envisat data to map the interseismic deformation of eastern Tibet. The area under study starts just South of the Haiyuan fault, crosses the eastern termination of the Kunlun fault and the bend on the XianShuiHe fault to the South. It includes the Longriba fault system, an active structure
located 150 km west of the Longmen Shan front (Xu et al., 2008, Ren et al., 2013). GPS data suggest that it
may accommodate a large part of the present-day relative movement (6-8 mm/yr) between the Aba block and the south China block (Thatcher, 2007, Shen et al 2005). The Longriba and the Longmen Shan faults might be linked at depth by a decollement zone or by ductile shear in the crust (Shu et al., 2008). We process three adjacent Envisat 1000 km long swaths crossing this mountainous and vegetated terrain using a small baseline strategy. The interferograms show numerous phase perturbations that mask the interseismic motion due to : (1) coherence loss, (2) stratified atmospheric delays, (3) DEM error contribution, (4) the 2008 Sichuan earthquake. We will show how we tackle these limitations and display the effect of successive corrections. Focus will first be brought to the corrections applied before filtering and unwrapping, that increase phase spatial continuity. We estimate empirically stratified atmospheric delay polynomial relationship, depending on azimuth and elevation, on wrapped interferograms. We then estimate the local DEM error for each pixel. Multi-looking and filtering are based on various measures of pixel reliability in order to increase the signal to noise ratio of filtered interferograms. Finally, unwrapping is obtained by a region growing algorithm, from the most reliable areas to the least, avoiding to cross layover areas.
Time series of phase delay maps in the Longriba area are dominated by a side lobe of the May 2008 Sichuan earthquake. After its extraction and correction, principal component analysis clearly evidences a linear trend modulated south of the Longriba fault system by post-seismic transient motion, in agreement with GPS data (Huang et al., 2014). Finally, we obtain a LOS velocity map of interseismic motion with an amplitude of a few mm/yr. We will discuss strain localization along the main eastern Tibet faults and possible vertical motion.