PP13A-1388:
Effect of Cretaceous oceanic anoxic events on the evolutionary trend of planktonic foraminifera

Monday, 15 December 2014
Azumi Kuroyanagi, Kazumi Ozaki and Hodaka Kawahata, AORI, University of Tokyo, Kashiwa, Chiba, Japan
Abstract:
It is widely thought that oceanic redox state is essential for the evolutionary history of life on the earth, and “anoxic events” have been proposed as one of the causal mechanisms for mass extinctions. During mid-Cretaceous, widely known as the extremely warm period, oceanic anoxic events (OAEs) occurred several times and they would have caused a substantial impact on the biosphere. Planktonic foraminifera are marine planktons with calcite tests and their productions constitute ~30-80% of the modern deep-marine calcite budget, thus they play an important role in the global carbon cycle. Previous study reported that planktonic foraminifera displayed the high turnover (extinction and speciation) rate at or near the major OAEs. However, the impact of Cretaceous OAEs on the evolutionary trend of planktonic foraminifera remains obscure. In this study, we investigated the role of spatiotemporal extent of anoxia on the evolutionary trend of planktonic foraminifera by assessing the extinction/speciation rate of planktonic foraminifera around Cretaceous OAEs. The number of foraminiferal species increased across the OAE1a and then showed a peak after this episode. Around OAE2, several planktonic foraminifera species became extinct and several speciated, however, long-term trends in foraminiferal evolution showed no drastic changes near the event. Therefore these results suggest that the ocean surface environment at OAEs would not have a direct effect on foraminiferal extinction/speciation. This interpretation is reinforced when considering the recent culturing results, which demonstrate that modern planktonic foraminifera have a high tolerance to extremely low dissolved oxygen levels than expected. Accumulating geochemical data also suggest a spatial heterogeneity of oceanic anoxia/euxinia during OAE2. These results lead us to conclude that Cretaceous OAEs would not directly related to planktonic foraminiferal extinction due to regional distribution of anoxia/euxinia.