Landslide Investigations at Salmon Falls Creek Canyon in Idaho Using Satellite-Based Multitemporal Interferometric Synthetic Aperture Radar Techniques

Monday, 15 December 2014
Marius Necsoiu, Donald M Hooper and Ronald N Mcginnis, Southwest Research Institute, San Antonio, TX, United States
Landslides are a common worldwide natural hazard. Due to the difficulties of preventing landslides or mitigating their impacts, it is vital to know the locations of potential slide areas and their states of activity, especially for those situations where property, infrastructure, and human lives are at risk.

This study improves understanding of the rate of movement and the lateral extent of the active domain of a landslide complex within Salmon Falls Creek Canyon near Twin Falls, Idaho. The research investigates the feasibility of (i) using high-resolution multitemporal Interferometric Synthetic Aperture Radar (InSAR) techniques to detect slow, nonlinear landslide displacement, and (ii) developing a work-flow that maximizes the accuracy of InSAR techniques while minimizing the number of Synthetic Aperture Radar (SAR) datasets.

The results provide (i) new insights into landslide displacement and rate of change over two decades; (ii) an assessment of change at a finer spatial resolution with similar or greater accuracy than previous studies that incorporated field and optical-based remote sensing; and (iii) improved geostatistical analysis of two separate landslides within the Salmon Falls Creek Canyon complex. These InSAR results show that the headwall block and transverse scarp had the highest mean annual velocity in the radar line-of-site direction. Line-of-site movement velocity in the toe and body of the landslide was less. Additionally, we interpret that lateral translation may have been greater in the body and toe compared to the headwall region due to the curved shape of the landside detachment surface.