V11A-4686:
The Puzzle of Septarian Concretions
V11A-4686:
The Puzzle of Septarian Concretions
Monday, 15 December 2014
Abstract:
Carbonate concretions in clastic rocks and their septarian fracture fills act as ‘time capsules’, capturing the signatures of chemical and biological processes during diagenesis. However, many aspects of the formation of concretions and septarian fractures remain poorly understood, for although concretions occur in clastic rocks throughout the geological record, they are rarely documented in recent shallow-burial environments. Consequently, the depth and temperature at which concretion-forming processes occur are often poorly constrained. Carbonate clumped isotopes have recently been applied successfully to concretions and fracture fills that begin to unravel the conditions for the formation of concretions and septarian fractures. Here, we present carbonate clumped isotope results of fracture fills from eight different concretions from various locations, including multiple phases of fill in 4 concretions. Our results suggest that they precipitated over a range of temperatures (22°C - 85°C) from d18Oporewater values between -12‰ to 3‰ and within different d13Ccarbonate zones. The majority of fills precipitated at lower (<50°C) temperatures, although the fluids were not always meteoric. For 3 concretions containing fractures with multiple phases, the d18Oporewater becomes progressively heavier with each later phase and increasing temperature. The one exception to this is in the Barton Clay Formation (UK) where the fractures must have been continuously filled during exhumation as the latest cement phase is the coolest with a d18Oporewater more 18O-depleted than the earliest phase. Therefore, concretion growth must usually initiate early on (<~1 km burial), and subsequent fracturing is also usually early. However, the fracture infilling can occur over a range of depths and can record the diagenetic history of a formation.We gratefully acknowledge a BP and EPSRC Case Studentship for funding this project, and the Natural History Museum London for providing samples.