Fram-2014/2015: A 400 Day Investigation of the Arctic's Oldest Sediments over the Alpha Ridge with a Research Hovercraft

Wednesday, 17 December 2014: 2:55 PM
John K Hall1 and Yngve Kristoffersen1,2, (1)Geological Survey of Israel, Jerusalem, Israel, (2)Nansen Environmental and Remote Sensing Center - NERSC, Bergen, Norway
The thickest multi-year ice in the Arctic covers a secret. Four short cores raised from the Alpha Ridge in the 1970s and 1980s from drift stations T-3 and CESAR showed ages between 45 and 76 my. The reason for these old ages became clear when examination of legacy seismic data from T-3 showed that in some places up to 500 m of sediments had been removed within an area of some 200 by 600 km, presumably by an impact of asteroid fragments.

To investigate the impact area, the authors conceived an innovative research platform in 2007. Named the R/H SABVABAA, this 12m by 6m hovercraft has been home-based in Svalbard since June 2008. During the following 6 years the craft and its evolving innovative light-weight equipment have made 18 trips to the summer ice pack, traveling some 4410 km over ice during some six months of scientific investigations.

An opportunity to get a lift to this area, some 1500 km from Svalbard, came in a 2011 invitation to join AWI's icebreaker POLARSTERN in its ARK-XXVIII/4 expedition departing Tromsö August 5, 2014. The 400 day drift will be the first wintering over, ever, of a mobile research platform with geophysical, geological, and oceanographic capabilities.

The Arctic ice pack continually moves due to winds and currents. While at the main camp, observations will consist of marine geophysics (seismic profiling with four element CHIRP, a 20 in³ airgun with single hydrophone, as well as 12 kHz bathymetry and 200 kHz sounding of the deep scattering layer), marine geology (coring with a hydrostatically-boosted 3 or 6 m corer; bottom photography; and two rock dredges), and oceanography. Deployed away from the camp, four sonobuoys will allow 3-D seismic acquisition. Access to the depths below the ice is via a hydraulic capstan winch, with 6500 m of Kevlar aramid fiber rope with 2.8 ton breaking strength. Ice thickness monitoring of the local 100 km² will be made with the craft's EM-31 probe when away from the camp, moving to choice locations for taking cores, and deformation of the ice pack monitored by 5 remote GPS data loggers. A meteorological station including radiation flux measurements will be operated. Several cameras will be used to observe under-ice conditions (ice formation, biology) as well as time-lapse local ice movement.

The talk will summarize the operations up to the time of the GEBCO 2014 Science Day at the AGU Fall Meeting.