H11O-05:
What Is Robustness?: Problem Framing Challenges for Water Systems Planning Under Change

Monday, 15 December 2014: 9:10 AM
Jonathan D Herman1, Patrick M. Reed1, Harrison Bray Zeff2 and Gregory W Characklis2, (1)Cornell University, Ithaca, NY, United States, (2)University of North Carolina, Chapel Hill, NC, United States
Abstract:
Water systems planners have long recognized the need for robust solutions capable of withstanding deviations from the conditions for which they were designed. Faced with a set of alternatives to choose from—for example, resulting from a multi-objective optimization—existing analysis frameworks offer competing definitions of robustness under change. Robustness analyses have moved from expected utility to exploratory “bottom-up” approaches in which vulnerable scenarios are identified prior to assigning likelihoods; examples include Robust Decision Making (RDM), Decision Scaling, Info-Gap, and Many-Objective Robust Decision Making (MORDM). We propose a taxonomy of robustness frameworks to compare and contrast these approaches, based on their methods of (1) alternative selection, (2) sampling of states of the world, (3) quantification of robustness measures, and (4) identification of key uncertainties using sensitivity analysis. Using model simulations from recent work in multi-objective urban water supply portfolio planning, we illustrate the decision-relevant consequences that emerge from each of these choices. Results indicate that the methodological choices in the taxonomy lead to substantially different planning alternatives, underscoring the importance of an informed definition of robustness. We conclude with a set of recommendations for problem framing: that alternatives should be searched rather than prespecified; dominant uncertainties should be discovered rather than assumed; and that a multivariate satisficing measure of robustness allows stakeholders to achieve their problem-specific performance requirements. This work highlights the importance of careful problem formulation, and provides a common vocabulary to link the robustness frameworks widely used in the field of water systems planning.