B53E-0228:
Optical Characterization of Dissolved Organic Matter in Maine Rivers

Friday, 19 December 2014
Dana Patricia White1, Collin S Roesler1, Anna Bourakovsky1, Susan Drapeau1, Thomas Gordon Huntington2, Michael Billmire3 and Philip Camill1, (1)Bowdoin College, Brunswick, ME, United States, (2)USGS Maine Water Science Center, Augusta, ME, United States, (3)Michigan Technological University, Research Institute, Houghton, MI, United States
Abstract:
The coastal waters of the Gulf of Maine are significantly impacted by the input of fresh water from a distributed river system. In this study, we focus on the four largest watersheds (Androscoggin, Kennebec, Penobscot and St. John) that contribute to the freshwater inputs. In particular, we investigated the input of dissolved organic carbon via PARAFAC analysis of excitation/emission matrix fluorescence spectroscopy. Monthly sampling of over 65 stations for three years has yielded a wealth of information about tributary characteristics. Specifically, we investigated the role of water quality properties and landscape coverage in the mobilization and flux of different components of DOC and how those properties vary spatially across the landscape and temporally over seasons and between years. Across all rivers, humic-like materials were the most prevalent components at the river mouths; accumulating along the rivers due to sequential tributary inputs. The concentration of humic-like materials increased latitudinally from the Androscoggin to St John, a geographic progression in source material also correlated to climate variations, land coverage or bedrock acidity. Dissolved proteins displayed positive relationships with climatological Chlorophyll a and total Nitrogen values. In all rivers, peak fluorescence of dissolved proteins was observed during summer months, with the maximum intensity observed in the Androscoggin River. The magnitude and pattern of seasonal flux of fluorescent materials into the Gulf of Maine was very similar between the Penobscot and the Kennebec rivers. The flux of all DOM components was highest during the spring freshet, with a secondary peak during fall precipitation maxima and lowest during August, likely due to both low mobilization and photo degradation of river borne materials.