A23B-3218:
Aerosol/Radiation, VNIR/NIR/TIR Imaging, Net Solar and Longwave Radiation, Meteorological Fluxes, Atmospheric Dropsonde, and Ocean Temperature/Salinity Microbuoy Payloads for Earth Observations Using a Manta Unmanned Aerial System (UAS)
Tuesday, 16 December 2014
Timothy S Bates1,2, Ru-Shan Gao3, Daniel M Murphy3, Hagen Telg3, Scott Brown4, Tejendra Dhakai4, Christopher J Zappa4 and Scott Stalin2, (1)University of Washington Seattle Campus, Seattle, WA, United States, (2)Pacific Marine Environmental Laboratory, Seattle, WA, United States, (3)Earth System Research Laboratory, CSD, Boulder, CO, United States, (4)Lamont -Doherty Earth Observatory, Palisades, NY, United States
Abstract:
Several new payloads have been developed for use in the Manta UAS. The NOAA/PMEL aerosol payload (Atmos. Meas. Tech., 6, 2115-2120, 2013) has been expanded to include a printed optical particle spectrometer to obtain aerosol size distributions and an upward looking radiometer to measure radiant flux densities through aerosol layers. Lamont-Doherty Earth Observatory (LDEO) has improved its visible and infrared imaging payload to provide precise measurements of ice/snow/ocean surface temperatures accurate to 0.1°C. LDEO has also developed a number of new payloads that include: i) hyperspectral aberration-corrected imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance of the upper-ocean and sea ice to determine ocean color, ice-age distributions and ice-surface type; ii) up- and downward-looking hemispheric pyrgeometers and pyranometers to measure the net longwave and net shortwave radiation for ice-ocean albedo studies with an onboard visible camera to determine the sea ice fraction and whitecapping; iii) meteorological measurements of turbulent momentum, sensible, and latent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; iv) four dropsonde-microbuoys (DMB) that can be deployed from the Manta. The four DMB measure temperature, pressure, and relative humidity as they descend through the atmosphere. Once they land on the ocean’s surface, they deploy a string of sensors that measures temperature and salinity of the upper three meters of the ocean. The ocean sensors telemeter data back to the UAS on subsequent flights. The DMB can also be dropped on an ice flow to measure the rate of the ice movement. Details of these payloads and example data will be reported.