Sediment Transport and Infilling of a Borrow Pit on an Energetic Sandy Ebb Tidal Delta Offshore of Hilton Head Island, South Carolina

Tuesday, 16 December 2014
Ansley Wren1, Kehui Xu2,3, Yanxia Ma4, Denise Sanger5 and Robert Van Dolah5, (1)Coastal Carolina University, Conway, SC, United States, (2)Louisiana State University, Department of Oceanography and Coastal Sciences, Baton Rouge, LA, United States, (3)Coastal Studies Institute, Baton Rouge, LA, United States, (4)Louisiana State University, Baton Rouge, LA, United States, (5)South Carolina Department of Natural Resources, Marine Resourcecs Research Institution, Charleston, SC, United States
Bottom-mounted instrumentation was deployed at two sites on an ebb tidal delta to measure hydrodynamics, sediment transport, and seabed elevation. One site (‘borrow site’) was 2 km offshore and used as a dredging site for beach nourishment of nearby Hilton Head Island in South Carolina, and the other site (‘reference site’) was 10 km offshore and not directly impacted by the dredging. In-situ time-series data were collected during two periods after the dredging: March 15 - June 12, 2012(‘spring’) and August 18 - November 18, 2012 (‘fall’). At the reference site directional wave spectra and upper water column current velocities were measured, as well as high-resolution current velocity profiles and suspended sediment concentration profiles in the Bottom Boundary Layer (BBL). Seabed elevation and small-scale seabed changes were also measured. At the borrow site seabed elevation and near-bed wave and current velocities were collected using an Acoustic Doppler Velocimeter. Throughout both deployments bottom wave orbital velocities ranged from 0 – 110 m/s at the reference site. Wave orbital velocities were much lower at the borrow site ranging from 10-20 cm/s, as wave energy was dissipated on the extensive and rough sand banks before reaching the borrow site. Suspended sediment concentrations increased throughout the BBL when orbital velocities increased to approximately 20 cm/s. Sediment grain size and critical shear stresses were similar at both sites, therefore, re-suspension due to waves was less frequent at the borrow site. However, sediment concentrations were highly correlated with the tidal cycle at both sites. Semidiurnal tidal currents were similar at the two sites, typically ranging from 0 – 50 cm/s in the BBL. Maximum currents exceeded the critical shear stress and measured suspended sediment concentrations increased during the first hours of the tidal cycle when the tide switched to flood tide. Results indicate waves contributed more to sediment mobility at the reference site, while tidal forcing was the dominant factor at the borrow site. The seabed elevation data corraborates these results as active migrating ripples of 10 cm were measured at the reference site, while changes in seabed elevation at the borrow site were more gradual with approximately 30 cm of net accretion throughout the study.