Reconstructed Oceanic Sedimentary Sequence in the Cape Three Points Area, Southern Axim-Konongo (Ashanti) Greenstone Belt in the Paleoproterozoic Birimian of Ghana.

Wednesday, 17 December 2014: 12:05 PM
Shoichi Kiyokawa, Kyushu University, Fukuoka, Japan, Takashi Ito, Ibaraki University, Education, Mito, Japan, Nyame K Frank, University of Ghana, Geology, Accra, Ghana and Tetteh M George, University of Mines and Technology, Mine geology, Tarkwa, Ghana
The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. The Birimian greenstone belt in both the Birimian rock (partly Sefwi Group) and Ashanti belts are separated from the Tarkwaian Group which is a paleoplacer deposit (Perrouty et al., 2012). The Birimian rock was identified as volcanic rich greenstone belt; Kumasi Group is foreland basin with shale and sandstone, quartzite and turbidite derived from 2.1 Ga granite in the Birimian; Tarkwaian Group is composed of coarse detrital sedimentary rocks deposited along a strike-slip fault in the Birimian. In the eastern part of the Cape Three Point area, over 4km long of volcanic-sedimentary sequence outcrops and is affected by greenschist facies metamorphism. Four demarcated zones along the coast as Kutike, Atwepo, Kwtakor and Akodaa zones. The boundaries of each zone were not observed, but each zone displays a well preserved and continuous sedimentary sequence. Structurally, this region is west vergent structure and younging direction to the East. Kutike zone exhibits synform structure with S0 younging direction. Provisional stratigraphic columns in all the zones total about 500m thick. Kutike, Atwepo zones (> 200m thick) have coarsening upward characteristics from black shale to bedded volcanic sandstone. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of volcaniclastics with black shales and has fining upward character. This continuous sequence indicate distal portion of submarine volcaniclastic section in an oceanic island arc between the West African and Congo Cratons.