DI13A-4261:
Calibration of Diamond As a Raman Spectroscopy Pressure Sensor

Monday, 15 December 2014
Shigeaki Ono, JAMSTEC Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan
Abstract:
In high pressures and high temperatures, the equations of state of reference materials, such as gold, platinum, and sodium chloride, have usually been used for the precise determination of the sample pressure. However, it is difficult to use this technique in laboratory-based experiments, because the synchrotron radiation source is often required. Although the fluorescence of ruby has been commonly used as the pressure sensor in previous laboratory-based experiments, it is impracticable at high temperatures. It is known that the first-order Raman mode of diamond anvil has been considered as a strong candidate because its Raman signal is intense and the diamond is always used as the anvil material. It is the purpose of this study to present the dependences of pressure and temperature on the Raman shift at the culet face of the diamond anvil.Gold powder, which was mixed with NaCl powder, was used as the pressure reference. The high-pressure and high-temperature experiments were performed using a hydrothermal diamond anvil cell (HTDAC). The sample was probed using angle-dispersive X-ray diffraction and Raman spectrometer system, located at the synchrotron beam line, at the BL10XU of SPring-8. The pressure was determined from the unit cell volume of gold using the equation of state for gold. The pressure and temperature dependences of the Raman shift were investigated [1]. The difference between our and previous studies increased rapidly with increasing pressure at pressures above 50 GPa, which is a fatal uncertainty for the pressure calibration. One possible explanation for this inconsistency is an influence of the stress condition in the sample chamber, because a significant deviatoric stress is accumulated during compression. The stress condition of the DAC experiment on the generated pressure is complicated because of some factors (e.g., the crystallographic orientation, design of the anvil, size of the culet, pressure transmitting medium, gasket material, and temperature). In our study, the cell was heated at each pressure increment. The heating is known to induce a significant release of the deviatoric stress during compression. This indicates our experimental methodology has an advantage to reduce the influence of deviatoric stress on the Raman shift of diamond.

[1] Ono et al., J. Appl. Phys., (in press).