GC53B-0526:
Impact of Predicted Changes in Rainfall and Atmospheric Carbon Dioxide on Maize and Wheat Yields in the Central Rift Valley of Ethiopia

Friday, 19 December 2014
Alemayehu Muluneh1, Birhanu Biazin2, Leo Stroosnijder1, Woldeamlak Bewket3 and Saskia Keesstra1, (1)Wageningen University, Wageningen, Netherlands, (2)International Livestock Research Institute, Addis Ababa, Ethiopia, (3)Addis Ababa University, Geography and Environmental Studies, Addis Ababa, Ethiopia
Abstract:
The objective of this study was to assess potential impacts of climate change on maize and wheat yields in the Central Rift Valley of Ethiopia. We considered effects of elevated atmospheric CO2 and changes in rainfall during the main (Kiremt) and the short (Belg) rain and cropping seasons. Crop yield simulations were made with the FAO AquaCrop model using baseline climate data and climate change scenarios projected by the ECHAM5 General Circulation Model under A2 (high) and B1 (low) emission scenarios. The MarkSimGCM daily weather generator was used to generate projected daily values of precipitation and temperature. The projected rainfall during Kiremt shows an increase by about 12-69% while projected Belg rainfall decreases by up to 68%. The mean onset of the Belg cropping season for maize is projected to be delayed by 2-9 weeks and the mean cessation is expected to be extended by more than a month in sub-humid/humid areas of the CRV. In most of the sub-humid/humid areas, the 90 day maize and wheat growing periods will not have dry spells lasting longer than 10 consecutive days. However, in the semiarid areas dry spells could last longer than 15 days. The mean simulated maize yield increased by up to 30% due to changes in the projected seasonal rainfall alone, and by up to 14% due to elevated CO2 alone. The combined effect of elevated CO2 and projected climate factors increased maize yields by up to 59% in sub-humid/humid areas, but resulted in a decrease of up to 46% in the semiarid areas. Wheat yield showed no significant response to the projected rainfall changes, but increased by up to 40% due to elevated CO2. Our results suggest that climate change will increase crop yields in the sub humid/humid regions of the CRV. However, in semi-arid areas the overall projected climate change will affect the yield negatively.