The Very High Alfvén Mach Number Bow Shock of Saturn

Thursday, 18 December 2014
Ali Sulaiman1, Adam Masters1 and Michele Karen Dougherty2, (1)Imperial College London, London, SW7, United Kingdom, (2)Imperial College, London, United Kingdom
Collisionless shock waves are ubiquitous in the universe and fundamental to understanding the nature of collisionless plasmas. The interplay between particles (ions and electrons) and fields (electromagnetic) introduces a variety of both physical and geometrical parameters such as Mach numbers (e.g. MA, Mf), β, and θbn. These vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics of shocks. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. It is not clear what happens in the higher MA regime. Here we show the parameter space of MA for all bow shock crossings from 2004-2012 as measured by the Cassini spacecraft. We found that the Saturnian bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we estimated the θbn­ of each crossing and were able to further constrain the sample into categories of similar features. Our results demonstrate how MA plays a central role in controlling the onset of physical mechanisms in collisionless shocks, particularly instabilities, non-time stationarity and electron acceleration. We anticipate our comprehensive assessment to give deeper insight to high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks. This can potentially bridge the gap between more modest MA observed in near-Earth space and more exotic astrophysical regimes where shock processes play central roles.