V44A-04:
Quantification of the Intrusion Process at Kïlauea Volcano, Hawai’I

Thursday, 18 December 2014: 5:45 PM
Thomas L Wright and Bruce D Marsh, Johns Hopkins University, Baltimore, MD, United States
Abstract:
Knowing the time between initial intrusion and later eruption of a given volume of differentiated magma is key to evaluating the connections among magma transport and emplacement, solidification and differentiation, and melt extraction and eruption. Cooling rates for two Kïlauea lava lakes as well as known parent composition and residence times for intrusions that resulted in fractionated lavas later erupted on the East Rift Zone in 1955 (34 years) and 1977 (22 years) allow intrusion dimensions to be calculated. We model intrusions beneath Kïlauea’s East Rift Zone near their point of separation from the magma transport path at ~ 5 km depth using Jaeger’s (1957) method calibrated against Alae and Makaopuhi lava lakes with wallrock temperatures above the curie point at 450-550°C. Minimum thicknesses of 50-70 meters are found for intrusions that fed the two fractionated lavas, as well as for long-lived magma bodies identified from geodetic monitoring during many East Rift eruptions. These intrusions began as dikes, but probably became sills or laccolithic bodies that remained near the transport path. Short-lived intrusions also arrested near the magma transport path, but that retain a dike geometry, are hypothesized to serve as a trigger for the small but discrete increments of seaward movement on Kïlauea’s south flank that characterize slow-slip earthquakes.

Two additional thoughts arise from the quantitative modeling of magma cooling. First, long-term heating of the wallrock surrounding the horizontal East Rift Zone transport path slows the rate of cooling within the conduit, possibly contributing to the longevity of the East Rift eruption that began in 1983. Second, the combined effects of heating of the wall rock and ever-increasing magma supply rate from the mantle may have forced breakdown and widening of the vertical transport conduit, which could explain the 5-15-km deep long-period earthquake swarms beneath Kīlauea’s summit between 1987 and 1992.