T22C-08:
Morphotectonic, Quaternary and Structural Geology Analyses of the Shallow Geometry of the Mw 6.1, 2009 L’Aquila Earthquake Fault (central Italy): A Missed Opportunity for Surface Faulting Prevention.

Tuesday, 16 December 2014: 12:05 PM
Stefano Pucci1, Fabio Villani1, Riccardo Civico1, Daniela Pantosti1, Alessandra Smedile1, Paolo Marco De Martini1, Deborah Di Naccio1 and Anna Gueli2, (1)INGV National Institute of Geophysics and Volcanology, Rome, Italy, (2)Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, Catania, Italy
Abstract:
The surface-rupturing 2009 L’Aquila earthquake evidenced the limited knowledge of active faults in the Middle Aterno Valley area. Gaps in detailed mapping of Quaternary deposits and tectonic landforms did not trigger researches on active faults, but after the tragic event.

We present a morphotectonic study of geometry and evolution of the activated fault system (Paganica-San Demetrio, PSDFS). The LIDAR analysis and field survey yield to a new geological and structural map of the area with an unprecedented detail for the Quaternary deposits. It shows an alluvial depositional system prograding and migrating due to fault system evolution.

The normal faults offset both the Quaternary deposits and the bedrock. The structural analysis allows us to recognize two fault systems: (A) NNE- and WNW-trending conjugate extensional system overprinting a strike-slip kinematics and (B) dip-slip NW-trending system. Crosscut relationship suggests that the activity of system B prevails, since Early Pleistocene, on system A, which earlier may have controlled a differently shaped basin. System B is the main responsible for the present-day compound outline of the Middle Aterno Valley, while system A major splays now act as segment boundaries.

The long-term expression of B results in prominent fault scarps offsetting Quaternary deposits, dissecting erosional and depositional flat landforms. We retrieved detailed morphologic throws along fault scarps and we dated landforms by 14C, OSL (Optically Stimulated Luminescence), CRN (Cosmogenic Radionuclide) and tephra chronology.

We show the persistent role of extensional faulting in dominating Quaternary landform evolution and we estimate slip-rate of the PSDFS at different time-scales. The results support repeated activity of PSDFS for ~20 km total length, thus implying M6.6 maximum expected earthquake.

Such an approach should have been applied beforehand for the actual hazard estimation, to trigger, early enough, the adoption of precautionary measures against surface faulting events.