C12B-02:
Distinct Seasonal Velocity Patterns Based on Ice-Sheet-Wide Analysis of Greenland Outlet Glaciers

Monday, 15 December 2014: 10:35 AM
Twila A Moon1, Ian R Joughin2, Benjamin Eaton Smith3, Michiel R van den Broeke4 and Mika Usher3, (1)University of Colorado at Boulder, Boulder, CO, United States, (2)Univ Washington, Seattle, WA, United States, (3)University of Washington, Seattle, WA, United States, (4)Utrecht University, Utrecht, Netherlands
Abstract:
Mass loss from the Greenland Ice Sheet increased significantly over the last several decades and current mass losses of 260-380 Gt ice/yr contribute 0.7-1.1 mm/yr to global sea-level rise. Greenland mass loss includes ice discharge via marine-terminating outlet glaciers and surface meltwater runoff, the former now making up a third to a half of total ice loss. The magnitude of ice discharge depends in part on ice-flow speed, which has broadly increased since 2000 but varies locally, regionally, and from year to year. Research on a limited set of Greenland glaciers also shows that speeds vary seasonally. However, for much of the west, northwest, and southeast coasts where ice loss is increasing most rapidly, there are few or no records of seasonal velocity variation. Ice velocity is influenced by several key components of the ice-sheet-ocean-climate system: subglacial environment, surface melt and runoff, and ice-ocean interaction at the ice-front (terminus). Thus, knowledge of seasonal velocity patterns is important for predicting annual ice discharge, understanding the effects of increased surface melt on total mass loss, and establishing how ice-flow responds to other climatic changes. We developed 5-year records of seasonal velocity measurements for 55 glaciers around the ice-sheet margin. Among glaciers with significant speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position, with seasonal summer speedup sustained through fall. The other two patterns appear to be meltwater controlled and indicate regional differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. These differences in dominant velocity control mechanisms reveal likely spatiotemporal variations in the dynamic response of the ice sheet to climate change.