H23J-1005:
Predicting Redox Conditions in Groundwater Using Statistical Techniques: Implications for Nitrate Transport in Groundwater and Streams

Tuesday, 16 December 2014
Anthony J Tesoriero, USGS Oregon Water Science Center, Portland, OR, United States and Silvia Terziotti, USGS North Carolina Water Science Center, Raleigh, NC, United States
Abstract:
Nitrate trends in streams often do not match expectations based on recent nitrogen source loadings to the land surface. Groundwater discharge with long travel times has been suggested as the likely cause for these observations. The fate of nitrate in groundwater depends to a large extent on the occurrence of denitrification along flow paths. Because denitrification in groundwater is inhibited when dissolved oxygen (DO) concentrations are high, defining the oxic-suboxic interface has been critical in determining pathways for nitrate transport in groundwater and to streams at the local scale. Predicting redox conditions on a regional scale is complicated by the spatial variability of reaction rates. In this study, logistic regression and boosted classification tree analysis were used to predict the probability of oxic water in groundwater in the Chesapeake Bay watershed. The probability of oxic water (DO > 2 mg/L) was predicted by relating DO concentrations in over 3,000 groundwater samples to indicators of residence time and/or electron donor availability. Variables that describe position in the flow system (e.g., depth to top of the open interval), soil drainage and surficial geology were the most important predictors of oxic water. Logistic regression and boosted classification tree analysis correctly predicted the presence or absence of oxic conditions in over 75 % of the samples in both training and validation data sets. Predictions of the percentages of oxic wells in deciles of risk were very accurate (r2>0.9) in both the training and validation data sets. Depth to the bottom of the oxic layer was predicted and is being used to estimate the effect that groundwater denitrification has on stream nitrate concentrations and the time lag between the application of nitrogen at the land surface and its effect on streams.