Including Faults Detected By Near-Surface Seismic Methods in the USGS National Seismic Hazard Maps – Some Restrictions Apply

Thursday, 18 December 2014: 2:20 PM
Robert A Williams, U.S. Geological Survey, Golden, CO, United States and Kathleen M Haller, US Geological Survey, Denver, CO, United States
Every 6 years, the USGS updates the National Seismic Hazard Maps (new version released July 2014) that are intended to help society reduce risk from earthquakes. These maps affect hundreds of billions of dollars in construction costs each year as they are used to develop seismic-design criteria of buildings, bridges, highways, railroads, and provide data for risk assessment that help determine insurance rates. Seismic source characterization, an essential component of hazard model development, ranges from detailed trench excavations across faults at the ground surface to less detailed analysis of broad regions defined mainly on the basis of historical seismicity. Though it is a priority for the USGS to discover new Quaternary fault sources, the discovered faults only become a part of the hazard model if there are corresponding constraints on their geometry (length and depth extent) and slip-rate (or recurrence interval). When combined with fault geometry and slip-rate constraints, near-surface seismic studies that detect young (Quaternary) faults have become important parts of the hazard source model. Examples of seismic imaging studies with significant hazard impact include the Southern Whidbey Island fault, Washington; Santa Monica fault, San Andreas fault, and Palos Verdes fault zone, California; and Commerce fault, Missouri. There are many more faults in the hazard model in the western U.S. than in the expansive region east of the Rocky Mountains due to the higher rate of tectonic deformation, frequent surface-rupturing earthquakes and, in some cases, lower erosion rates. However, the recent increase in earthquakes in the central U.S. has revealed previously unknown faults for which we need additional constraints before we can include them in the seismic hazard maps. Some of these new faults may be opportunities for seismic imaging studies to provide basic data on location, dip, style of faulting, and recurrence.