Reaction Weakening of Dunite in Friction Experiments at Hydrothermal Conditions and Its Relevance to Subduction Zones

Monday, 15 December 2014
Diane E Moore and David A Lockner, USGS, Menlo Park, CA, United States
To improve our understanding of processes occurring in the mantle wedge near the downdip limit of seismicity in subduction zones, we conducted triaxial friction tests on dunite gouge at temperatures in the range 200-350°C, 50 MPa fluid pressure and 100 MPa effective normal stress. Dunite, quartzite, and granite forcing blocks were used respectively to approximate changing rock/fluid chemistry with decreasing distance above the subduction thrust. All experiments were characterized by an initial increase in frictional strength to a peak value, followed by a decrease associated with shearing-enhanced alteration of the dunite gouge. Reaction products and the extent of weakening varied with the chemical environment. In the dunite-block experiments, strength gradually declined from the peak value to a coefficient of friction, µ ~ 0.5–0.6, consistent with the frictional strength of serpentine that formed on the shear surfaces from alteration of the gouge. Interaction of dunite gouge with quartzite and granite driving blocks resulted in significantly greater weakening, to µ ~ 0.3, at temperatures of 250°C and higher. Talc and serpentine partly replaced dunite gouge sheared between quartzite blocks, and metastable saponitic smectite clays crystallized in dunite sheared between granite blocks, as a result of fluid-assisted chemical exchange with the minerals in the wall rocks. These results suggest that rapid and substantial weakening can occur in the mantle wedge immediately overlying the subducting slab. Whichever the chemical environment, attainment of peak strength typically was accompanied by oscillatory slip with small stress drops that gradually was replaced by stable slip with increasing displacement. This oscillatory behavior in some ways resembles the tremor events that have been reported near the forearc mantle corner in subduction zones, and it may indicate the possible involvement of mineral reactions in some instances of tremor.